
J •

/

Universal Index System

Steve Kelley

Nick Roussopoulos
Timos Sellis

Sarah Wallace

N9

Advanced Communication Technology Inc.
1209 Goth Lane

Silver Spring, Maryland 20905

ABSTRACT

The Universal Index System (UIS) is a index management system that uses a uniform interface to solve the heterogeneity
problem among database management systems. UIS provides an easy-to-use common interface to access all underlying
data, but also allows different underlying database management systems, storage representations, and access methods.

1. Introduction

Today, there is a great diversity of computers, operating systems, database management systems, and communica-
tion protocols. As a result of this heterogeneity, computer users are required to learn many different data access methods
in order to obtain the information they need. This causes an attitude of "it's too much trouble to learn all these different
systems," which leads to a significant amount of software and data duplication.

There are several approaches that can be taken to solve the heterogeneity problem: two of which are standardiza-
tion and uniformization. Standardization is the concept of choosing one specific system to use, and expecting or requiring
everyone to follow this standard. This, however, does not provide an adequate solution because it could he extremely
cosily to change to the standard if a different system was being used. Uniformization is the concept of creating a layer on

top of current systems that provides uniform access to all data, regardless of the underlying system. This allows the
underlying systems to remain unchanged, yet also provides a single common access method for users to access data.

This paper presents the Universal Index System (UIS), an index management system that uses a uniform interface to
solve the heterogeneity problem among database management systems. UIS provides an easy-to-use common interface to
access all underlying data, but also allows different underlying database management systems, storage representations,
and access methods.

2. UIS Components

UIS is a system that manages and maintains indexes, sets, indexsets, and indexkits. An index is an object that asso-
ciates terms with pointers. A simple example of an index is the index of a book. It associates a term used in the book

with the page number(s) on which that term appears. Another example of an index is a subject index in a library catalog,
which associates library books with different subjects.

A set is an object that contains only pointers. Usually sets are created by extracting the pointer field from an index.
Using the example of a book's index, a set could he created from the index by the definition all the page numbers that

contain the words 'database', 'data model', 'data definition language', or 'data manipulation language'.

An indexset is a catalogued collection of indexes and sets. Every index and set must be associated with exactly
one indexset. In addition to the indexes and sets belonging to an indexset, an indexset also contains an index catalog to
maintain all the information for managing indexes, and a set catalog to maintain all the information for managing sets.

An index.kit is a logical grouping of an introduction, index, dictionary and thesaurus. The introduction component

of an indexkit is an object which contains a textual description of the index. The dictionary component of an indexkit is
an object that associates terms given in the index with their definition. It is used to assist the user in accessing the index.
The thesaurus component of an indexkit is an object that associates terms given in the index with other terms. The
thesaurus supports both generalization and specialization of terms in the index. The thesaurus is also used to assist the
user in accessing the index. The introduction, dictionary and thesaurus components are neither managed nor maintained

by UIS. Figure 1 shows the relationships among the different objects managed by UIS.

18

INDEXSET
INDEXKI'I_

indexk|t

introduction Index DictionaryThesau_s

Figure I - Relationships among Indexes, Indexsets, Indexkits and Kitsets.

3. UIS Capabilities

UIS provides commands that allow the user to create and manipulate indexes, sets, indexsets, and indexkits.

3.1. Index Commands

UIS uses the notion of current objects to simplify the index commands. The user specifies which instance of an

object is to be current i.e. to be worked on, and then subsequent commands are performed on the current object. The
index commands rely on the existence of a current index, current index row, and current index boolean.

The current index row is set to be the tuple in the current index that was most recently accessed by the navigation rou-

tines (see below for a description of the navigation routines). The current index boolean is a boolean condition chosen by
the user to assist in navigation.

UIS provides a relationally complete set of commands for indexes. In addition to commands that allow the user to
create, insert into, delete from, save and destroy indexes, there are routines that allow the user to retrieve a previously

created index for either modification or read only, return an index (the opposite of retrieve) and pick an index to be the
current index.

There are commands to allow the user to navigate both forward and backward through an index, accessing a single
tuple at a time. UIS provides the user with index booleans and index selects to assist in this navigation. An index
boolean is a boolean condition defined by the user to restrict the search to a subset of the index. For example, the user
could define an index boolean, camseq = LFP1010" to restrict the search on an index to only those tuples of an IUE index

having LFPI010 as camera sequence number. The user can create index booleans during a user session, but they do not
persist beyond the end of that session. UIS provides commands to create, modify, list (display), pick (make as current),
and delete index booleans. There are also commands to allow the user to reproduce indexes. These include copying and
moving an index to an indexset.

To support interfaces to programming languages, there are commands to allow the user to bind attribute values to
program variables, i.e. embedding UIS commands in an application written in C. There are two commands for binding to
program variables, one for binding a single attribute (column) from an index, and one that allows for binding a whole row
from an index. These commands cannot be used during an interactive session.

19

3.2. Indexset Commands

UIS provides a few commands to manipulate indexsets. At this point a user can only create and destroy indexsets.
In the future, we plan to add commands such as include copy, subset, intersect, subtract and union, and commands to

copy and move indexsets.

3.3. Indexkit Commands

Although not implemented in the current prototype, several commands to manipulate indexkits have been designed

for UIS. In addition to commands that allow a user to create and destroy indexkits, there are commands to allow the user
to reproduce indexkits. These include copy, subset, intersect, subtract and union. Subsetting an indexkit is defined to be

a new indexkit, whose components arc the result of subsetting each of the components in the original indexkit. Intersect-
ing two indexkits is defined to be a new indexkit, whose components are the result of intersecting corresponding com-
ponents of the two original indexkits. Similar definitions hold for union and subtraction.

3.4. Command Summary

Tables A, B, C, and D and the end of this paper provide a summary of the index, set, indexset and indexkit com-
mands, respectively.

4. The Design of UIS

The development of the UIS prototype was divided into several phases: the requirements phase, the design phase,
the implementation phase and the testing and integration phase. This approach was taken in an attempt to resolve any
conflicts in the proposed system as early as possible.

The requirements document contains a functional description of what the system should do. The purpose of the
design phase is to convert the functional description of what the system should do into an algorithmic description of how
the system should do it.

The design phase primarily concentrated on two tasks. First, we had to determine what information needed to be
available to the system during execution and what information needed to be available from one execution to the next

(persistent information). Second, we needed to translate the functional requirements of the user commands into design
specifications. These two tasks were performed in a stepwise fashion to yield a cohesive and consistent design.

4.1. System Information

UIS manages and maintains four different types of objects: indexes, sets, indexsets, and indexkits. In order to do so
properly and efficiently, the system needs to have available certain information about each object. As an example, con-
sider a library: how useful or efficient would a library be if it did not have a catalog that listed what books were con-

tained in the library, or where they were located? Probably not very useful, definitely not very efficient. In the same way
that a library catalogs all the objects that it manages, so must UIS. This section describes which information UIS needs
to efficiently manage its objects.

4.2. System Catalog -- Indexes

In Section 2 we defined conceptually what an index is. To determine what persistent information we need for
indexes, we need to know what an index is structurally. Structurally, an index is a table in which some of the columns
are the items indexed and the last column is the pointer. An index is of type k if it has k-item tuples (columns). The for-

mat of an index depends on the internal representation of the index. Examples of formats are B-trees, R-trees, and heaps.

Given this structural definition, we see that some of the information that needs to be stored include the name of the

index, its type, and its format. Other information that is necessary are the attribute or column names, their types, lengths
and their location within the tuple (offset). This information is necessary when checking whether or not a user's com-
mand is valid, and to assist the system in locating and extracting attribute values. Another piece of information used to
assist the system in index manipulation and validation is the index's tuple width (the total size of the tuple). In addition,
we decided it would be helpful to store whether or not a given index had an indexkit associated with it. This would allow
us to remain consistent with the indexkit system information (discussed later).

Because an index can have any number of attributes, we decided it would be easier to have two system catalogs.
The first one contains all the information about the index except for the attribute information. A second catalog contains

the attribute information. This approach was taken to simplify the catalog access routines (if a single catalog were used,
the access routines would have to support variable length entries). Figure 2 describes pictorially the system catalog

20

Index Catalog

Indel Name Index "l'yl_ ,dex Forma lndexklt Name

FOU.ET EOTN 2 BTREE rOLLET EOTN

SUBJECTS 5 RTREE SUBJECT UB

I

Indexklt _t IndexSlMCt Name ruple Wldt|

FOLLET EARLY_WORKS 44

UBRARY PG COUNTY 204

Attribute Catalog

Inde, Name Attribute Nmmde

FOLLET EOTN TERM

FOLLET EOTN PAGE NUM

SUBJECTS _UBJECT TERM

SUBJECTS AUTItOR

SUBJECTS TITLE

SUBJECTS ISBN NUMBER

SUBJECTS LC NUMBER

AttrType Attr L_ngtl' AtttOffsel

n'R/sa 40 0

t,v'r 4 40

s'mmG 40 0

S'rBmG 40 40

ymma 100 80

srn ma 12 180

srnmG 12 192

Index Format =

{ BTREE, RTREE, IIEAP }

Attr Type =
{ INT,FLOAT, CHAR, STRING }

Figure 2 - System Catalog Information for Indexes.

information for indexes. It contains two example indexes: FOLLET_EOTN (a book index for Ken Follet's The Eye Of The

Needle and SUBJECTS (a library catalog of subjects which references books).

4.3. System Catalog -- lndexsets

An indexsct has several components (see Figure 3). It contains an index catalog discussed in the previous section,
a set catalog, a transaction log, and then the indexes and sets themselves that belong in the indexset. The transaction log
contains information about updates to the indexes and sets in the indexset. It is used in transaction management

(currently unimplemented). UIS allows the user to explicitly specify all the buffer management constants needed for the

management of indexset components. As a result, the system catalog information for indexsets must store all this infor-
mation.

Before explaining the system catalog information for indexsets, we need to clarify what is meant by databook and
index._pace. When defining an indexset, the user creates a logical space in which indexes and sets will belong at some
point in the future. The databook objects are these logical spaces. An indexspace is the physical storage space on the
disk that corresponds to the logical space defined by the databooks. Indexspaces can contain several databooks, and data-
books can span more than one indexspace. Having the user be able to specify both logical space and physical space

allows the user to place indexes physically near each other or logically near each other.

Given these new objects, an indexsct is composed of the following components: index catalog, set catalog, Iransac-

tion log, any number of databooks, and any number of indexspaces. For each of these components, the system needs to
have information about the names of each of these components, the initial physical size of these components, their max-

imum size, and the rate at which these components can increase (when an insertion needs to be made and there is no

space, an increase is requested and as long as the maximum size has not been reached, the increase is allowed).

Storing all this information creates a complicated system catalog structure. The databook and indexspace informa-
tion for indexsets is stored in its own catalog. This is due to the fact that there can be any number of these objects in an

indexset (similar to the attribute information for indexes). Since the directory, index catalog, set catalog and transaction

log components are required for each indexset, and an indexset can contain at most one of each component, all of this
information can be stored in a single catalog along with the indexset name. In addition, it was decided to have enlries in

this catalog for the total number of databooks and indexspaces in the indexset, to assist in retrieval from the other cata-

logs.

21

INDEXSET

r

Index.space A

i Databook 1 [i Databook2
--1" _'1

I I

indexl index?. I i index3
i
I I

i i
i i
I I

I i
I

.. i ,t...................... ,_.J
I

j Index.spaceB !

set_b setc

Figure 3 - Physical Structure of an Indexset

Figure 4 describes pictorially the system catalog information for indexsets. It contains two examples of indexsets:
FOLLET_SET(an indexset that contains all the index information about Ken Follet's books) and SUBJECT_SET (all indexset
that contains all the subject information at a specific library). For example, the index catalog component for FOLLET_SET
says that the index catalog is located in the file FOLL,ET_/DX.Its initial size is 4096 bytes, and when the system needs more
space for the index catalog, space is allocated in blocks of 1096 bytes. If the size of the index catalog reaches 200000, no
more space will be allocated to the index catalog. The Databook System Catalog and the lndexspace System Catalog
contain similar information about the databooks and indexspaces in the indexseL

4.4. System Catalog D lndexkits

As defined an Section 2, an indexkit is a logical grouping of an introduction, index, dictionary and thesaurus. In
order for the system to understand this logical grouping, it ne_ds to keep track of which instances of each component

22

Indexset S ,stem Catalo

_IL'T mume i_da_bo_ :ht4emtllm¢

Fotz_rr_sa-r 1 1

svBjECr_sEr 1 1

Directory Info Index Calakql Into Set O/t-lell Info Loll Info

_N_km_,,OU.L_J)IR Device[, ,, _ ID v De_dce' Det4ce "Name F OL/aE'r- u^ Name/fO_S_w" i Nnme'¢.O_ LOG
........ + t _..................... 4-

lult=tz=j 4096 In[ttt=j 4096 =Iulzd= I 4096 /nlut=[4096

Incrsla[1096 lyttON[1096 ncrsl=[1096 Entr=ll_ 1096
........ +.............. ÷............. , +............ .,
Mazsf=_ 200000 I_b=l_.' 200000 Ma==l=_ 200000 _!_1_.' 200000

......... F q...................... "{..................... +

l"a'_= i 4096 Inl_l=* 1 4096 'nit=he i 4096 Ilnl=m i 4096

........ t " _ • ,'_............. " ,':".............

In¢r,lz=i 1096 lucrdmi 1096 Incrsl=d 1096 .Incr=l_ 1096
........ +..................... ÷..................... +.....................

Databook System Catalo..

lSgT_mtme De_ce_nlnm Inl_lxe lm:rsia_ Maxdlte

FOU._T_SEr &_CO" WORKS 4096 1096 200000

suBj_'r s_'r c:oMecrrF_ Sc 4096 1096 200000

Indexspac e System Catalo

ISE'F name I_vlce mtm* Inltsl s_ Inerllze Maxdz_

SUBJECT_SkT_)_PUT__SC._ c4096 1096 400000

FOtZ__ser£ U_Lr_WORr, S._ _ 4096 1096 200000

Figure 4 - System Catalog Information for Indexsets.

make up this logical grouping. As a result, the system information needed for each indexkit is the name of the indexkit,
the introduction name and its location (intro_set), the index name and its location (indexset), the dictionary name and its
location (dict set), and the thesaurus name and its location (thes_set) (Remember that the introduction, dictionary and
thesaurus components are not managed by UIS). With this information, the system can efficiently execute all the indexkit
commands.

Figure 5 illustrates the system catalog information for indexkits. It contains two example indexkits (they
correspond to the two index examples of Figure 2: FOLLET_EOTN (an indexkit corresponding to the index, having the same
name), and SUBJECTLIB (an indexkit corresponding to the subject index of a library catalog). Indexkits are not imple-
mented in the current prototype.

5. Run-Time Information

In addition to persistent information about each object in the system, during execution, there is a need to track addi-
tional information about the state of objects currently being manipulated or accessed by the system. Tracking such

Indexkit System Catalog

Indxxklt Ittro lntro Index Index Dictionary Dlctio_ry Thmuru= Th_aurua

Name Name Set Name Set Name Set Name :Set

Fou,.__ FOLL._ FOLL_ FOU.._ FOLLET FOLL_ /_OVFJ.,_ FOU._ _OVF__
EOTN EOTN_INT-RO INTROS EOTN BOOKS DICTION,_RY DICTS THKSAUR_IS THE3

SUBJECTS_ LIBRARY SUBJECT lJBRARY UBRAJ_Y LIBRARY
SUBJECT_LIB IN'FRO INTROS SUBJECTS LIBRARY DICTIONARY DICT'$ THESAURUS THE$

Figure 5 - System Catalog Information for Indexkits.

23

information is essential to maintaining a consistent system. This information will be particularly crucial in a multi-user

environment, when it is possible for different users to try to update the same data at exactly the same time. If the system
were keeping no information about objects currently in the system, then it would have no way of preventing different
users from updating the same data at the same time; there would be no way to guarantee a consistent system. This section
describes what information UIS needs during execution to maintain consistency of the objects.

5.1. Run-Time Information -- Indexes

As described in Section 3, the index routines support the notion of a current index. What this means in terms of
execution, is that a user can have any number of indexes retrieved at a time (i.e. open and accessible), of which at most

one may be the current index. We adopted the notion of using a tag (unique identifier) to identify indexes that have been
retrieved to allow us to quickly access the indexes. As a result, anytime an index is retrieved, an index tag is assigned to
it. For each index that is retrieved by the system, the tag must be readily available in order to manipulate the index. This
run-time variable is designated by Index Tag.

A pointer into the index file must also be readily available to the system if the index is to be accessed at all.

Clearly, if the index weren't going to be accessed at all, there would be little reason for the user to retrieve it. Therefore, a

file descriptor for each index must also be kept as run-time information while the system is being used. This run-time
variable is designated by F_ptr.

An index can be retrieved for either modification or read only. There are two pieces of run-time information that
need to be kept related to the retrieval mode of indexes. The first is the actual retrieval mode. The system needs to know

whether an index has been retrieved for modification or read only in order to prevent the user from trying to modify an
index that was retrieved for read only. This is especially crucial in a malt-iuser environment, when more than one user

may want to access the same index. This run-time variable is designated by Mode. Secondly, the system needs to keep
track of whether the index has actually been modified (in the case of retrieval for modification). This information is used
in the "save index" command. An index that has been retrieved for modification, but not actually modified does not

need to be saved even if the user issues the save index command. Having this information available permits the system to
detect these occurrences and not waste its time saving an index that has not actually changed. This run-time variable is

designated by Dirty. Dirty is set to TRUE if the index has been modified, but not saved. Dirty is set to FALSE if the index
has not been modified since the last time it was saved.

Finally, the system needs to know which indexes that are currently in the system have been created, but not saved.

The reason for this is as follows. We cannot guarantee that a newly created index will be small enough to be completely
contained in main memory. Therefore, when the user creates a new index, all persistent information is entered into the

system catalog and the index files are created. The system needs to be able to distinguish these "created but not saved"
indexes from those that either have been recently created but saved, or those that were retrieved. This distinction is

necessary because if the user quits the system without saving these indexes, the system needs to know that they are to be
deleted. This run-time variable is designated by Saved. Saved is set to TRUE if the index was retrieved during this user
session (i.e. created sometime in the past) or if the index was created during this user session and has already been saved.
Saved is set to FALSE if the index was created during this user session but has not yet been saved.

The remaining run-time information that needs to be available is the information found in the system catalog.
Therefore, a pointer to the system catalog information is also needed at run-time. This run-time variable is designated by
SC_info. Figure 6 shows the information that UIS needs to manage and manipulate indexes correctly.

lad_t Tag Saved?. Mode Ditty? SC_lnfo F ..ptr

i1 FALSE MODIFY TRUE "* 3

i2]'RUE READ_ONLY FALSE ** 4

Figure 6 - Run-Time Catalog Information for Indexes.

24

5.2. Run-Time Information -- lndexsets

As defined in Section 2, an indexset is a catalogued group of indexes and sets. Therefore, when an index or set is
to be retrieved from an indexset, its system catalog information is found in the catalog components of the indexset (refer

to Figure 1). At execution time, the system needs to maintain file descriptors to the catalog components of the indexset in
order to be able to retrieve indexes and sets. These run-time variables are designated by Fd_l_cal, Fd I attr cat, and
Fd S cat. They correspond to the index catalog, the index attribute catalog and the set catalog componenl_ of the index-

set, respectively.

If multiple indexes or sets are retrieved from a single indexset, we need to be very careful in making sure that only

one set of catalog file descriptors are used for that indexset. If every retrieved index and set has its own file descriptor
information for the indexsets catalog, then it would be very easy for the system to encounter read/write conflicts in the
indexsets catalog components. Therefore, we need to have a way to maintain a single copy of the indexset information,
and still know exactly how many indexes and .sets from that indexset are currently retrieved. This suggests a need for
run-time variables to count the number of retrieved indexes and sets for each indexset. This has two advantages. First, it

prevents having multiple file descriptors to the indexsct catalog components and prevents read/write conflicts. Second, it
allows us to have the indexset retrieved for as small an amount of time as necessary. By keeping track of how many
indexes and sets are currently retrieved, the system is able to return the indexset as soon as those numbers are zero. The

run-time variables that designate these counts are l_count for indexes, and S_count for sets.

The remaining run-time information that needs to be available is the information found in the system catalog.
Therefore, pointers to the system catalog information are also needed at run-time. These run-time variables are desig-

nated by SC info, Databook, and Indexspace, which point to the different system catalog entries for the indexset. Fig-
ure 7 shows the information that UIS needs to manage and manipulate indexsets correctly.

5.3. Run-Time Information -- lndexkits

There is no run-time information needed for indexkits. Because an indexkit is nothing more than a collection of

system catalog information, all commands involving indexkits update only this system catalog information. As a result,
the catalog is only accessed at the exact moment a request is made. There is no notion of retrieving an indexkit, and at
some later time making some modification to it.

Fd I cat Fd_|_attr_catt I_count Fd_S_¢Jtt S t'ount SC_lnfo I_labook [ndtUl_Ce

3 4 2 5 0 "" H

6 7 1 8 1 "" n

Figure 7 - Run-Time Catalog Information for Indexsets.

25

Table A: Index Commands

Index Management Commands

create index drop index insert index

update index move index delete index

Index Reproduction Commands

copy index intersect index subset index

subtract index union index

Index Searching Commands

find term in index build set with term

build set with list build set with range

Index Browsing Commands

retrieve index pick index save index

return index list indexes

Index Navigation Commands

first in index next in index fetch using index

last in index previous in index

build index boolean list index booleans pick index boolean

modify index boolean drop index boolean

build index select list index selects pick index select

modify index select drop index select

Index Run-Time Environment Commands

bind index column bind index table

26

Table B: Set Commands

Set Management Commands

build empty set drop disk set insert set

delete set update set

Set Reproduction Commands

combine sets restrict sets sort sets

Set Browsing Commands

retrieve set pick set build empty memory set save set

return set list sets drop set

Set Navigation Commands

first in set next in set fetch using set

last in set previous in set

build set boolean list set booleans pick set boolean

modify set boolean drop set boolean

build set select list set selects pick set select

modify set select drop set select

Set Run-Time Environment Commands

bind set column

27

Table C: Indexset Commands

lndexset Management Commands

create indexset drop indexset

alter indexset move indexset

lndexset Reproduction Commands

copy indexset intersect indexset subset indexset

subtract indexset union indexset

Indexspace Commands

create indexspace alter indexspace

Table D: Indexkit Commands

Indexkit Management Commands

create indexkit drop indexkit

update indexkit move indexkit

Indexkit Reproduction Commands

copy indexkit intersect indexkit subset indexkit

subtract indexkit union indexkit

28

